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First-person vision

Use body-worn wearable cameras

Analyze videos which reflect wearer’s action and interest
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Future person localization in third-person videos

(1) The use of appearance feature

Learns preference of walkable area [Kitani+, ECCV’12]

The use of holistic visual attributes [Ma+, CVPR’17]

(2) The use of interaction between people

Computer simulation (Social force) [Helbing+, ‘95]

Data-driven approach (Social LSTM) [Alahi+, CVPR’16]
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Future person localization in third-person videos

Social LSTM [Alahi+, CVPR’16]

Model each pedestrian by a LSTM

Social pooling layer squashes the features of 

neighboring people into a fixed-size vector
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Cannot directly apply to first-person videos



First-Person future person localization

Predicts the wearer’s future position
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Egocentric Future Localization [Park+, CVPR’16]



Future person localization in first-person videos

𝑡

? ? ?

Our Challenge:

To develop a future person localization method tailored to first-person videos

Current
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Our approach

Incorporating both pose and ego-motion as a salient cue in first-person videos

Multi-stream CNN to predict the future locations of a person

Pose indicates future direction Ego-motion captures interactive locomotion
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Proposed method: tri-stream 1D-CNN

Location & scale Poses Ego-motions

Multi-stream conv-net
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Input: sequence of each feature

Convolution



Proposed method: tri-stream 1D-CNN

Concatenate

Deconvolution
Convolution

Output: sequence of future locations and scales

Single-stream deconv-net

Multi-stream conv-net
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Locations & scales Poses Ego-motions

Input: sequence of each feature



Feature representation

Location-scale cue (3 dims)

Location (2 dims) + scale (1 dim)

Captures perspective effect by the apparent size

Pose cue (2D×18 keypoints=36 dims)

Used pretrained OpenPose [Cao+,  CVPR’17]

Normalized position and scale

Imputed missing detections

Target feature

Ego-motion feature

Location

Scale

𝑥
𝑧

⊙𝑦
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Ego-motion cue (6 dims)

Camera pose estimation from multiple frames [Zhou+, CVPR’17]

Translation (3 dims) + rotation (3 dims)

Accumulate local movement between frames



Data collection

Recorded walking video sequences in diverse cluttered scenes

One subject, total 4.5 hours, captured over 5,000 people

Annotations by tracking people

□: tracked ≧2s, □: tracked <2s
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Baseline methods

Constant: Use location at the final input frame as prediction

ConstVel: Assume a constant velocity model using the mean speed of inputs

NNeighbor: Extracts k (=16) nearest neighbor input sequences, then 

produce output as the mean of the corresponding locations.

Social LSTM [Alahi+, CVPR’16]: The state-of-the-art method on fixed cameras
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Prediction example (input: 1sec, output: 1sec)

GT ProposedSocial LSTM 
[Alahi+, CVPR’16]

Input NNeighbor
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Prediction example (input: 1sec, output: 1sec)

GT ProposedSocial LSTMInput NNeighbor
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Quantitative evaluation

One-second prediction error (unit: % against frame width)

Equivalent to 

60cm physical 

error
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Features
Walking direction

Toward Away Average

Location + scale 9.26 6.02 6.40

+ Ego-motion 8.80 5.80 6.18

+ Pose 8.38 6.00 6.29

Proposed 8.06 5.76 6.04

Ablation study

Pose (    ) contributes to predicting who comes Towards the wearer

Ego-motion (    ) contributes to predicting who walks Away from the wearer

(%)
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One-second prediction error (unit: % against frame width)



Effect of prediction length

Prediction error linearly increases with prediction length

Error increase rate is lower than the Social LSTM baseline
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Predicting longer-term future
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Method
Walking direction

Toward Away Average Average (1.0s)

Social LSTM 22.12 17.56 17.75 9.23

Proposed 13.68 9.54 9.75 6.04

two-second prediction error (unit: % against frame width)

Input: 0.6sec, output: 2.0sec

Able to predict longer-term future with modest error increase

(%)



Failure case (existence of obstacles)

GT ProposedSocial LSTMInput NNeighbor
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Failure case (sudden direction change of the wearer)

GT ProposedInput
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Study in social interactions dataset [Fathi+, CVPR’12]

Head-mounted videos in a theme park (more challenging setting)
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Quantitative evaluation

Modest performance even in head-mounted videos
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Prediction examples (input: 1sec, output: 1sec)

-0.9s Current +1.0s

GT ProposedInput
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Summary

New Problem

Future person localization in first-person videos

Future Directions

Forecasting under uncertainty

Separating prediction of the wearer and the target

Finding

Both target’s pose and wearer’s ego-motion were shown to be effective cues

27

Limitations

Cross-subject evaluation (assume a single wearer in this work)

Offline inference (currently not real-time)
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