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First-person vision

» Use body-worn wearable cameras

» Analyze videos which reflect wearer’s action and interest













Future person localization in third-person videos

(1) The use of appearance feature
» Learns preference of walkable area [Kitani+, ECCV'12]

» The use of holistic visual attributes [Ma+, CVPR'17]

(2) The use of interaction between people

» Computer simulation (Social force) [Helbing+, '95]

» Data-driven approach (Social LSTM) [Alahi+, CVPR'16] §




Future person localization in third-person videos

Social LSTM [alahi+ cVvPR16]
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Cannot directly apply to first-person videos




First-Person future person localization

Egocentric Future Localization [Park+, CVPR'16]

Ground truth EgoRetinal map Predicted trajectories

Predicts the wearer’s future position



Future person localization in first-person videos

Current

Our Challenge:
To develop a future person localization method tailored to first-person videos



Our approach

» Incorporating both pose and ego-motion as a salient cue in first-person videos

» Multi-stream CNN to predict the future locations of a person

Pose indicates future direction

N

Ego-motion captures interactive locomotion




Proposed method: tri-stream 1D-CNN
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Input: sequence of each feature
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Proposed method: tri-stream 1D-CNN
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Output: sequence of future locations and scales 12




Feature representation

Target feature » Location-scale cue (3 dims)
— Location (2 dims) + scale (1 dim)
Scale — Captures perspective effect by the apparent size
\[ » Pose cue (2D X 18 keypoints=36 dims)

Location — Used pretrained OpenPose [cao+, cvpPr'17]

— Normalized position and scale

— Imputed missing detections

Ego-motion feature  » Ego-motion cue (6 dims)
— Camera pose estimation from multiple frames (zhou+, cver17]
— Translation (3 dims) + rotation (3 dims)

— Accumulate local movement between frames
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Data collection

» Recorded walking video sequences in diverse cluttered scenes
— One subject, total 4.5 hours, captured over 5,000 people
— Annotations by tracking people

: tracked =2s, - tracked <2s




Baseline methods

» Constant: Use location at the final input frame as prediction
» ConstVel: Assume a constant velocity model using the mean speed of inputs

» NNeighbor: Extracts k (=16) nearest neighbor input sequences, then
produce output as the mean of the corresponding locations.

» Social LSTM [alahi+, CvPR'16]; The state-of-the-art method on fixed cameras
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Prediction example (input: 1sec, output: 1sec)

== [nput === GT === NNeighbor + Social LSTM - - - Proposed
[Alahi+, CVPR'16]
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Prediction example (input: 1sec, output: 1sec)

== |nput === GT === NNeighbor + Social LSTM Proposed
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Quantitative evaluation

One-second prediction error (unit: % against frame width)
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Ablation study

One-second prediction error (unit: % against frame width)

Walking direction

Features

Toward Away  Average
Location + scale 9.26 6.02 6.40
+ Ego-motion (8.80 5.80 ) 6.18
+ Pose 8.38 6.00 6.29
Proposed 8.06 5.76 6.04 (%)

» Pose (' ) contributes to predicting who comes Towards the wearer

» Ego-motion () contributes to predicting who walks Away from the wearer



Effect of prediction length

Prediction error (unit: % against frame width)
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» Prediction error linearly increases with prediction length

» Error increase rate is lower than the Social LSTM baseline
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Predicting longer-term future

two-second prediction error (unit: % against frame width)

Walking direction

Method

Toward Away Averagei Average (1.0s)
Social LSTM 22.12 17.56 17.75 9.23
Proposed 13.68 9.54 9.75 6.04 (%)

» Input: 0.6sec, output: 2.0sec
» Able to predict longer-term future with modest error increase
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Failure case (existence of obstacles)

== [nput === GT === NNeighbor  Social LSTM

Proposed
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Failure case (sudden direction change of the wearer)

== |nput *=* GT Proposed
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Study In social interactions dataset [Fathi+, CVPR'12]

» Head-mounted videos in a theme park (more challenging setting)
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Quantitative evaluation

1 second prediction error (unit: % against frame width)
(%)
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Modest performance even in head-mounted videos
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Prediction examples (input: 1sec, output: 1sec)

-0.9s Current +1.0s

== |nput === GT Proposed
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Summary

New Problem
» Future person localization in first-person videos

Finding
» Both target's pose and wearer’s ego-motion were shown to be effective cues

Limitations
» Cross-subject evaluation (assume a single wearer in this work)
» Offline inference (currently not real-time)

Future Directions
» Forecasting under uncertainty

» Separating prediction of the wearer and the target .
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