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Style Adapted DataBase: セマンティクスを考慮した
スタイライゼーションによる手セグメンテーションの汎化
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あらまし ウェアラブルカメラから得られる一人称視点映像におけるドメインシフトは，照明条件や背景のアピアラ

ンスの変化によって生じ，手セグメンテーションの精度を低下させる．本論文では，このようなドメインシフトの問

題に対応するために，少数のターゲットラベルを用い，セマンティクスを考慮したスタイル変換によるドメイン適応手

法を提案する．具体的には，ソース画像とターゲット画像をそれぞれコンテンツとスタイルとしてスタイル変換ネッ

トワークに与え，これらのラベルによって前景と背景を分離した後，ネットワークは各領域ごとにソースデータにター

ゲットのスタイルを転移する．提案手法は，スタイル変換を施したソースデータセットに複数のスタイルを導入でき

ることから，このデータセットで学習したモデルは複数のターゲットドメインに一度で同時に汎化する．提案手法は，

最新の手セグメンテーションのためのドメイン適応手法と同等かそれ以上のクロスデータセット汎化性能を達成した．
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Abstract Domain shift in first-person vision degrades the performance of hand segmentation, which is caused by changes in
lighting conditions and background appearances. In this paper, we propose a semantics-aware stylization approach for domain
adaptation using an image style transfer with only a few target labels. Specifically, given a source image as content and a target
image as style, foreground and background are separated by their labels, and the network transfers the styles of the target image
to the source image separately for the foreground and background. Multiple styles can be fed into a stylized source dataset,
thus the model trained on the dataset simultaneously generalizes to multiple target domains at once. Our method achieves the
best cross-dataset generalization against the state-of-the-art domain adaptation methods for hand segmentation.
Key words Domain Adaptation, Style Transfer, Hand Segmentation, First Person Vision

1. Introduction

The growth of wearable devices brings a large amount of ego-
centric videos, which records persons’ daily interactions with their
surrounding environments. To understand camera wearer’s activi-
ties, hands are crucial entity in egocentric videos. Detection and
segmentation of hand regions have a vital role in several computer
vision tasks (e.g., hand pose estimation, 3D hand shape reconstruc-
tion, and hand-object interaction recognition) and their applications
such as robotics, human-machine interaction, and augmented reality.

Domain shift, a distribution mismatch between training and test-
ing data, degrades the performance of a model trained in a domain.
In first-person vision, this shift is caused by changes in appearances.
Since egocentric videos are collected in a myriad of environments, il-
lumination, background, and context are significantly diverse. Addi-
tionally, camera properties cause appearance-level differences such
as brightness, white balance, and resolution. Domain adaptation
(DA) is one of the solutions for aligning the distribution shift be-
tween source and target data. Cai et al. [1] proposed a Bayesian
CNN-based model adaptation framework for hand segmentation,
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Figure 1: Illustration of our approach.

which constructs reliable pseudo-labels for target data.
However, since we cannot assume that test data are drawn from an

identical distribution, single-target domain adaptation (STDA) that
assumes a single target domain is limited in the real world. Recent
work [2], [3] focuses on multi-target domain adaptation (MTDA),
where target data underlie multiple distributions, and the training
aims simultaneous adaptation to multi-target domains. Here, MTDA
can be employed in the following scenarios of first-person vision. A
camera wearer can move across environments (e.g., kitchen→dining
room, laboratory→outside). Moreover, when the time has passed
by, climate and lighting conditions in rooms drastically change in
daily life. Therefore, multi-target adaptation is worth considering
for real-world applications of first-person vision.

In hand segmentation, the appearance of the foreground (hands) is
based on the skin color of camera wearers or reflected light on their
hands, which has less dependency on the background appearances.
To address the appearance gap separately for the semantically corre-
sponding areas, we propose a simple yet effective weakly-supervised
and semantics-aware domain adaptation approach using a style trans-
fer. Given a source image as content and a target image as style, the
network transfers the target style to the source domain while preserv-
ing its content. Concretely, we split the foreground and background
of both inputs by their labels, and then stylize the source image for
each region. Owing to it, we obtain a style aligned source dataset,
named as Style Adapted DataBase (SADB), which is utilized for the
training of a segmentation model. Since the dataset-level adaptation
and segmentation training are disjoint, our method can be applied to
other downstream tasks and networks.

In the MTDA setting, we can extend the SADB to the one with
multiple target appearances since the style transfer enables to repre-
sent the multi-style, as illustrated in Figure 1. The model trained on
the SADB with the multi-target styles once generalizes simultane-
ously to the multi-target domains.

In our experiments, we quantitatively demonstrate the further im-
proved cross-dataset generalization against Bayesian CNN and the
state-of-the-art DA methods without specifying a source model to
a test domain. The proposed method improves the adaptation per-
formance of hand segmentation by 13.56% on average. We also
show that the appearance-level adaptation from different domains

is supportive by exploring the performance on the SADB exclud-
ing the style of a test domain. Qualitatively, we find the proposed
mask aligned stylization transfers lighting on hands to other do-
mains, which bridges the hand-level appearance gap. The model is
more robust to motion blur, which frequently occurs in first-person
vision.

2. Related Work

2. 1 Hand Segmentation in Egocentric Videos
Li and Kitani [4] categorized classical hand detection approaches

into three groups: (1) local appearance-based detection, (2) global
appearance-based detection, and (3) motion-based detection. Re-
cently, Urooj and Borji [5] adopted an end-to-end CNN approach
(RefineNet [6]), and achieved state-of-the-art results. Nevertheless,
generalization to unseen datasets is sensitive to the choice of the
source dataset [5] due to the gap of illumination, lighting conditions,
and camera lens properties between training and testing environ-
ments.

2. 2 Domain Adaptation
Single-target domain adaptation. Domain shift or domain gap

is the problem that a typical model trained on a specific distribu-
tion of data from a particular domain will not generalize well to
other datasets not seen during training. A way of addressing domain
shift is domain adaptation that usually indicates single-target domain
adaptation (STDA). There are mainly three categories: (1) minimiz-
ing the distance between the source and target feature distributions,
(2) generative (pixel-level) approach [7], [8], and (3) self-training
with pseudo-labels [1], [9].

Recently, Cai et al. [1] applied self-training-based unsupervised
domain adaptation to hand segmentation in egocentric videos and
proposed an uncertain-guided model adaptation (UMA) framework
using a Bayesian CNN. To estimate model uncertainty, the UMA
must conduct stochastic forward calculation many times in each it-
eration. Although such domain adaptation methods can produce
impressive results, its functionality and scalability are limited in
multi-target settings because it requires the same number of training
for adaptation as targets.

In this work, we adopt the generative approach to synthesize a
stylized source dataset, but the adaptation and segmentation training
are independent. Therefore, our dataset-level adaptation can be com-
patible with other downstream tasks and task models. Furthermore,
compared to the Bayesian CNN and STDA methods, our approach
is more practically efficient since we only need one-time training on
the SADB without the stochastic forward.

Multi-target domain adaptation. Even though STDA assumes
they are drawn from an identical distribution, all target instances
stem from multiple distributions in real-world scenarios, whereas
we can access the domain category. Multi-target domain adaptation
(MTDA) aims to adapt simultaneously to multiple and unlabeled
target domains. Gholami et al. [2] proposed a MTDA approach
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Figure 2: Method overview.

by maximizing the mutual information between domain labels and
domain-specific features while minimizing the mutual information
between the shared features. Recently, Chen et al. [3] proposed to
blend multiple target domains and minimize the discrepancy between
the source and the blended targets.

In the paper, by making use of a style transfer that enables mul-
tiple style representations, our method simultaneously transfers the
appearances, and the segmentation model adapts to multiple targets.

2. 3 Style Augmentation & Style Adaptation
Style transfer is a class of image processing algorithms that mod-

ify the visual style of an image while preserving its semantic content.
For data augmentation, the style transfer extends lighting variations
and synthesizes different texture as well. Geirhos et al. [10] created
a Stylized ImageNet (SIN) using the style transfer trained on Painter
By Numbers (PBN), which provides shape-based representation of
CNN for visual recognition. Jackson et al. [11] defined the random-
ization of color, texture, and contrast using a style transfer trained on
the PBN while preserving geometry as Style Augmentation. This
style randomization improves robustness to unseen domains. How-
ever, its drawback is to require a large amount of artistic images of
PBN as style images.

For domain adaptation, the style transfer can be seen as a spe-
cial domain adaptation problem with each style as a domain [12].
Here, the adaptation aligning style feature distributions of CNN can
be defined as Style Adaptation. DCAN [7] presented channel-wise
feature alignment for matching style feature statistics from two differ-
ent domains, where the network jointly stylizes images and performs
segmentation.

In this work, we adopt a style adaptation approach to align style
feature distributions requiring a few images per target.

3. Proposed Method

3. 1 Preliminaries
We first consider the problem of domain adaptation (DA). Let

S = {𝒙 (𝑠) , 𝒚 (𝑠) } be a source domain where 𝒙 (𝑠) and 𝒚 (𝑠) de-
note source data and pixel-wise labels, respectively. Target do-
main T = {𝒙 (𝑡) } includes unlabeled target data 𝒙 (𝑡) . S and
T underlie distributions 𝑃S (𝒙 (𝑠) , 𝒚 (𝑠) ) and 𝑃T (𝒙 (𝑡) ), in which
𝑃T (𝒙 (𝑡) ) =

∫
𝑃T (𝒙 (𝑡) , 𝒚 (𝑡) )𝑑𝒚 (𝑡) indicates the marginal distribu-

tion over target labels. We also define a segmentation network 𝑀 .
The goal is to learn the model 𝑀 that is capable of correctly predict-
ing labels 𝒚 (𝑡) for target data 𝒙 (𝑡) . Domain adaptation assumes all
unlabeled data derived from a single target domain, namely single-
target domain adaptation (STDA).

Here we turn to consider multi-target domain adaptation (MTDA).
Every unlabeled target instance 𝒙 (𝑡) underlies 𝑘 distributions
{𝑃T𝑗 (𝒙 (𝑡) )}𝑘𝑗=1. Existing domain adaptation algorithms can ad-
dress the problem by training 𝑘 target-specific models {𝑀 𝑗 }𝑘𝑗=1,
respectively, and using the 𝑗-th target model 𝑀 𝑗 to classify the ex-
amples from the 𝑗-th target. In contrast, the goal of MTDA is to
simultaneously adapt 𝑘 targets {T𝑗 }𝑘𝑗=1.

3. 2 Style Adapted DataBase
To achieve generalization to multi-target domains by a single

model, we propose a dataset-level style adaptation to multiple do-
mains using a style transfer. Our approach aligns style distribu-
tions between source and target domain via a weakly-supervised
foreground-background separated stylization with a few target la-
bels. The stylization produces a stylized source image with the
source content and target style. We then create a stylized source
dataset for the training of a segmentation model, which is called a
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Style Adapted DataBase (SADB). The model trained on the SADB
simultaneously generalizes to multiple target domains at once. The
overview of creating the SADB is shown in Figure 2, which is di-
vided into three steps: (1) preparing a pseudo-multi-target set, (2)
building a foreground-background separated stylization, and (3) cre-
ating a stylized source dataset using the pseudo-multi-target set as a
set of style images.

Step1: Prepare a pseudo-multi-target set. To begin with, we
randomly collect 𝑚 𝑗 images in the target domain T𝑗 (1 ≤ 𝑗 ≤ 𝑘),
and we have a total of 𝑛 (= Σ𝑘

𝑗=1𝑚 𝑗 ) images from all the target do-
mains. We annotate only the 𝑛 images for the following stylization.
Here, we define a pseudo-multi-target set as:

PMT = {{𝒙 (𝑡 𝑗 )𝑖 , 𝒚
(𝑡 𝑗 )
𝑖 }𝑚 𝑗

𝑖=1}
𝑘
𝑗=1, (1)

where 𝒙
(𝑡 𝑗 )
𝑖

(
𝒚
(𝑡 𝑗 )
𝑖

)
denotes the 𝑖-th target image (label) in the 𝑗-th

target domain. We utilize the pseudo-multi-target set as a style set,
one of which is fed into the style transfer to stylize a content image.

Step2: Build a semantics-aware stylization. Next, we design a
foreground-background separated stylization aligning semantically
corresponding areas between content and style images. We use
a photo-realistic style transfer [13] that preserves the geometrical
structure of the image introducing a smoothing step after the styl-
ization. The network contains a style transform function F1 called
PhotoWCT, and a photo-realistic smoothing function F2. Given a
style image 𝐼𝑆 and a content image 𝐼𝐶 as inputs, the whole algorithm
can be written as:

F2
(
F1

(
𝐼𝐶 , 𝐼𝑆

)
, 𝐼𝐶

)
. (2)

F1 transfers the style of 𝐼𝑆 to the content image 𝐼𝐶 while minimizing
structural artifacts in the output image. The key idea of PhotoWCT
is to directly match feature correlations of the content image to
those of the style image via the two projections. F2 processes the
output to eliminate artifacts of the stylization and produce a more
spatially consistent image. In our stylization pipeline, we separate
the foreground and background of the content and style images us-
ing their labels, respectively. The pair is then employed to stylize
these image regions. Finally, we concatenate the stylized foreground
and background. The mask alignment promotes style features for
semantically relevant regions.

Step3: Create a stylized source dataset. Here, we utilize a
source dataset S as content inputs and the pseudo-multi-target set
PMT as style inputs. Let SS = {𝒙 (𝑠𝑠) , 𝒚 (𝑠𝑠) } be a stylized source
domain with the source contents and the target styles. The stylized
source image set {𝒙 (𝑠𝑠) } contains the same number of images with
the original dataset. Given a style input pair (𝒙 (𝑡 𝑗 ) , 𝒚 (𝑡 𝑗 ) ) in PMT
and a content input pair (𝒙 (𝑠) , 𝒚 (𝑠) ) inS, 𝒙 (𝑠𝑠) and 𝒚 (𝑠𝑠) are written
as:

𝒙
(ss)
𝑖 = F2

(
F1

(
𝒙
(𝑠)
𝑖 , 𝒚

(𝑠)
𝑖 , 𝒙

(𝑡 𝑗 )
𝑙

, 𝒚
(𝑡 𝑗 )
𝑙

)
, 𝒙

(𝑠)
𝑖

)
, (3)

𝒚
(ss)
𝑖 = 𝒚

(s)
𝑖 , (4)

where 𝑖 denotes the index of the source data, and 𝑙, 𝑗 are uniformly
sampled by 𝑙 ∼ 𝑈 (1, 𝑚 𝑗 ), 𝑗 ∼ 𝑈 (1, 𝑘). We use the ground truth
labels in the source domain for the stylized dataset because the con-
tent is shared between the two datasets. To validate the effect of
style adaptation, we show RGB distributions and their cumulative
distributions in Figure 2. Both distributions in the stylized source
domain (right) are close to ones in the target domain (middle), and
accordingly our approach leads to domain adaptation in color space.

3. 3 Training of Hand Segmentation
Suppose we have a hand segmentation network as the model 𝑀 ,

hand segmentation can be defined as a binary semantic segmentation
task. The model 𝑀 is trained on the stylized source datasetSS and a
mini-batch used per iteration is randomly sampled from the dataset.
A task loss can be written as a binary cross-entropy loss:

𝐿𝑠𝑒𝑔 (𝒙 (𝑠𝑠) , 𝒚 (𝑠𝑠) ) = −
∑
ℎ,𝑤

𝑦
(𝑠𝑠)
ℎ,𝑤

log 𝑃
(𝑠𝑠)
ℎ,𝑤

+ (1 − 𝑦
(𝑠𝑠)
ℎ,𝑤

) log(1 − 𝑃
(𝑠𝑠)
ℎ,𝑤

), (5)

where 𝑃 (𝑠𝑠) = 𝑀 (𝒙 (𝑠𝑠) ) is the final output of the model 𝑀 given
a stylized source image 𝒙 (𝑠𝑠) , and the sample index is omitted for
simplicity. Besides the pseudo-multi-target set PMT , we do not
use any target image for refining the model prediction on the target
data.

4. Experiments

This section validates our proposed SADB in the real-world do-
main adaptation of hand segmentation in egocentric videos. We first
conduct an experiment to verify cross-dataset generalization ability
across the target domains. In ablation studies, we explore the support
of the adaptation from the target domains excluding a test one. We
also investigate the effect of the mask alignment, and conduct a blur
robustness test.

4. 1 Experimental Details
Datasets. Following [1], we set first-person vision datasets con-

taining various illuminations. EGTEA [14] is used as the source
domain, and GTEA (G) [15], EDSH (E) [4], UTG (U) [16], YHG
(Y) [17], and EgoHands (EH) [18] are utilized as the target domains.
EDSH-1 (E1) is a training dataset, and EDSH-2 (E2) and EDSH-K
(EK) are testing ones. In our experiments, we resize these images to
256 × 256 pixels for training the segmentation network.

For the proposed SADB, we prepare the pseudo-multi-target
set PMT -50 from training images of the target domains, where
𝑚 𝑗 = 10 (1 ≤ 𝑗 ≤ 𝑘), 𝑘 = 5. We also create pseudo-target sets
{PT 𝑗 -10}5

𝑗=1. PMT -50 has a total of 50 images where we ran-
domly collect 10 images per target. PT 𝑗 -10 contains a total of 10
images only from the target domain T𝑗 corresponding to the test one.
To confirm the effect of style adaptation from the target domain used
in testing and the other target domains, we create pseudo-multi-target
sets {PMT \ 𝑗 -40}5

𝑗=1 where 10 images are randomly sampled per
target, but the test domain T𝑗 is excluded.
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Table 1: Cross-dataset generalization ability. Mean IoU (%) is used for the evaluation. # denotes the number of models used in training.
Bold and blue letters indicate the best value and the second best one, respectively.

Method Source Style set GTEA EDSH-2 EDSH-K UTG YHG EgoHands Avg. #
RefineNet [6] EGTEA - 88.45 69.36 72.05 54.81 28.31 40.19 58.86 1
Bayesian RefineNet EGTEA - 88.96 76.32 75.76 58.32 36.19 42.35 62.98 1
CBST [9] EGTEA - 87.66 73.53 72.07 56.27 35.39 42.93 61.31 5
BDL [8] EGTEA - 86.09 72.40 73.60 62.10 41.70 43.90 63.30 5
Bayesian RefineNet + UMA [1] EGTEA - 89.45 79.65 78.12 67.62 52.23 46.65 68.95 5
Bayesian RefineNet + UMA + HS [1] EGTEA - 89.90 80.25 79.51 68.27 55.96 46.60 70.01 5
Ours-MTDA SADB PMT-50 89.06 75.71 77.29 74.35 59.27 49.32 70.83 1
Ours-STDA SADB PT 𝑗 -10 91.00 74.67 78.77 81.83 55.11 53.15 72.42 5
Target only - - 91.97 84.23 76.85 90.81 81.84 79.99 84.28 5

Table 2: Style adaptation from a test domain and the others.
Style set G E2 EK U Y EH Avg.
- 88.45 69.36 72.05 54.81 28.31 40.19 58.86
PMT\ 𝑗 -40 88.40 75.57 77.04 75.89 43.77 47.81 68.08
PT 𝑗 -10 88.88 74.67 78.77 81.83 55.11 53.15 72.07

Baseline & Comparison methods. We use RefineNet [6] as a
backbone network for hand segmentation. We compare the per-
formance of hand segmentation with its extensions to the Bayesian
method and domain adaptation, and recent domain adaptation mod-
els for semantic segmentation. These methods are shown in Table 1.

Evaluation. For evaluating the performance, we report mean
Intersection over Union (mIoU). For the robustness test, we add cor-
ruptions and perturbations to the test data as the method of [19]. We
report how the performance degrades from the one without corrup-
tions (Clean). Corruption mIoU (C-mIoU) is calculated with the
formula:

C-mIoU𝑑𝑏
𝑐 =

( 5∑
𝑠=1

𝑆𝑑𝑏𝑠,𝑐

)
/
( 5∑
𝑠=1

𝑆𝑑𝑏𝑠,Clean

)
, (6)

where 𝑐 and 𝑠 denote the corruption type and the level of distortion
severity (1 ≤ 𝑠 ≤ 5), respectively, and 𝑑𝑏 indicates the database
used in training. 𝑆𝑑𝑏𝑠,𝑐 is the value of mIoU.

4. 2 Results
Cross-dataset generalization. The cross-dataset generalization

performance of different methods is shown in Table 1. The method
using PMT -50 as a style set (Ours-MTDA) generalizes well to
all the target domains without the model specifying to the test do-
main. Ours-MTDA achieves 70.83% on average, which is supe-
rior to Bayesian RefineNet, the recent domain adaptation methods
(CBST [9], BDL [8]), and the state-of-the-art UMA [1] methods.
Furthermore, the method specifying the SADB to a single target us-
ing PT 𝑗 -10 (Ours-STDA) significantly improves the performance
by 27.02% on UTG, 26.8% on YHG, and 12.96% on EgoHands.
The average score over all the target domains achieves 72.42%. One
finding is that the stylization is effective on the domains with smaller
within domain gaps, especially in UTG, since a few style images can
represent most of the target appearance.

Table 3: Mask aligned stylization vs Unaligned stylization.
Method G E2 EK U Y EH Avg.
Baseline 88.45 69.36 72.05 54.81 28.31 40.19 58.86
Unaligned 84.11 77.97 75.81 61.14 31.83 32.29 60.53
Aligned 89.06 75.71 77.29 74.35 59.27 49.32 70.83

Figure 3: The effect of mask aligned stylization. (Top: EDSH1,
Bottom: YHG)

Style adaptation from other target domains. To verify the
support of style adaptation from different domains, we create test-
domain-specific SADBs using PMT \ 𝑗 -40, where the test domain
T𝑗 is excluded. We then train the RefineNet on them. Although the
stylization using PMT \ 𝑗 -40 as a style set does not exploit any target
image in the test domain during training, the performance improves
by 10% from the baseline. This can be explained that illumination
or lighting conditions are partially shared across target domains.
Hence, our multi-target style adaptation promotes each other.

Mask aligned stylization vs unaligned stylization. To verify the
effectiveness of the mask alignment, we compare the segmentation
performances trained on EGTEA only (baseline), SADB without the
foreground-background separation (unaligned), and the proposed
SADB with the mask alignment (aligned) in Section 3.. As shown
in Table 3, the unaligned stylization provides little marginal gain
from the baseline, but the aligned one significantly improves the
performance across most target domains. Qualitatively, red circles
in Figure 3 illustrate that the aligned stylization transfers the light on
hands to the stylized image. In contrast, the unaligned one alters the
style in a flat tone. Especially, the aligned stylization can reproduce
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Table 4: Robustness test for different blur distortions.
Blur Method G E2 EK U Y EH Avg.
Clean - 100 100 100 100 100 100 100
Gaussian baseline 96 93 87 88 106 85 93
Gaussian SADB 97 100 96 95 106 97 99

Defocus baseline 95 92 84 86 103 82 90
Defocus SADB 97 99 96 95 106 96 98

Glass baseline 93 77 75 86 89 79 83
Glass SADB 92 89 80 92 87 83 87

Motion baseline 95 91 87 86 111 86 93
Motion SADB 96 96 95 92 102 99 97

Zoom baseline 83 67 74 69 96 57 74
Zoom SADB 88 78 84 76 89 82 83

Total baseline 92 84 81 83 101 78 87
Total SADB 94 92 90 90 98 91 93

the blown-out highlight on the left hand in the bottom image of the
YHG domain.

Robustness test. A common failure case in egocentric hand seg-
mentation is motion blur due to dynamic and unpredictable camera
motion by a camera wearer, as discussed in [5]. To reveal the prop-
erty of the model trained on the SADB, we conduct a blur robustness
test. Perturbations are enforced by 5 blur algorithms: gaussian, de-
focus, glass, motion, and zoom blur. The result is shown in Table 4.
For all the blur algorithms, the proposed method prevents perfor-
mance degradation against the model trained on EGTEA.

5. Conclusion

This paper presents a weakly-supervised foreground-background
separated stylization from a few images per target using a style
transfer. Through the semantics-aware stylization, we create a Style
Adapted DataBase (SADB), which is a style aligned source dataset
for adapting to multiple target domains. The model trained on the
SADB achieves the best performance on the cross-dataset general-
ization benchmark of hand segmentation. In the ablation studies,
we show that the SADB leverages the effect of style adaptation from
different target domains, mask alignment can transfer highlight on
hands to other domains, and the model demonstrates blur robustness,
which is a desirable property in first-person vision.

This work focuses on the appearance-level domain shift, but does
not explicitly cope with the spatial mismatching of the labels be-
tween source and target domain. Handling geometric domain gap is
an important problem for future work.
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